ISSN: 2329-9096
Kelsey M Evans, Caroline J Ketcham, Stephen Folger, Srikant Vallabhajosula and Eric E Hall
Background: Concussions have been associated with deficits in balance and postural stability. Subjects sustaining mild to moderate head injuries showed an increase in inhibition of the primary motor cortex which has been associated with sensorimotor organization and movement execution changes.
Purpose: The purpose of this study was to examine the relationship between postural stability and information processing in collegiate athletes with and without a history of concussion.
Methods: One-hundred and sixty-five Division I student-athletes completed balance and neurocognitive baseline testing. Thirty-four had a previous history of concussion. Postural sway and spatio-temporal characteristics of center of pressure were measured under four conditions: eyes open firm surface, eyes closed firm surface, eyes open foam surface, eyes closed foam surface. Information processing data came from two composite scores from a neurocognitive assessment tool and from a somatosensory stimulation test.
Results: Results showed that student-athletes with a history of concussions, although healthy at the time of testing, had differences in postural control compared to student-athletes without a history of concussion. While sway index scores were not significantly different, spatio-temporal measures showed larger displacements in CoP in previously concussed student-athletes. Reaction times and visual motor speeds were significantly correlated with sway index scores suggesting that processing time does influence balance control in all participants. Conclusion: Sustained balance control differences in previously concussed student-athletes may have implications for compensation strategies and risk of additional injuries.