Journal de la science cellulaire et de la thérapie

Journal de la science cellulaire et de la thérapie
Libre accès

ISSN: 2157-7013

Abstrait

Rat Pancreatic Stromal Cells (PSC) affect Differentiation of Human Mesenchymal Stem Cells (hMSC) into Insulin-Producing Cells (IPCs) In vitro

Khoshchehreh R, Ebrahimi M, EslamiNejad MB, Aghdami N, Samani F and Baharvand H

The use of different sources of stem cells including embryonic and mesenchymal stem cells is a novel therapy for diabetic’s patients. However the efficiency of differentiation is not enough to complete treatment. An important point in the induction of stem cells into IPCs in vitro is the role of the pancreatic niche (which includes the stromal and epithelial niche). It can physically contact to adjacent cells and influence stem cell behavior via close range signaling. In this respect, we hypnotized that Pancreatic Stromal Cell (PSC) as a fundamental factor of the stromal niche may have an effective role in the generation IPCs (i.e, the efficiency of differentiation and function of newlyformed β-cells) in vitro. Therefore in this study, MSCs derived from umbilical cord (UC-MSCs) vain and bone marrow (BM-MSCs) was selected to differentiate into IPCs in co-culture with rat PSCs.

Our results have demonstrated that only BM-MSCs were able to differentiate into IPCs. Cells in Islet-like clusters with (out) co-cultured with rat pancreatic stromal cells, produced insulin and C-peptide and released them to culture medium at the end of the induction protocol; however they did not respond to glucose challenges very well. The presence of rat pancreatic stromal cells, up-regulated the expressions of insulin, Glut2, and Nkx2.2 were at the mRNA level in IPCs. These results suggested that rat PSCs possibly affect MSCs differentiation into IPCs by increasing the number of immature β-cells.

Clause de non-responsabilité: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été révisé ou vérifié.
Top