Journal du génie chimique et de la technologie des procédés

Journal du génie chimique et de la technologie des procédés
Libre accès

ISSN: 2157-7048

Abstrait

Random forest based electroencephalography classification for robotics dexterous hands movement

Ebrahim A Mattar

This research work is focusing on the applications of AI random forest based Electroencephalography (EEG) classification for robotics dexterous hands movements, for interpretation and understanding of the brainwaves resulting from electroencephalography during a human grasping task. The algorithm has been designed in such a way to allow an understanding and making use of how human is thinking during grasping and fingers movement’s events. These thinking patterns are then used to create an intelligent behavior for a robotic hand and fingers movements. The research is novel in a sense; it relies on detecting grasping features for a human grasping using Principle Component Analysis (PAC) or even (ICA), hence to learn these features for robotics applications.

Clause de non-responsabilité: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été révisé ou vérifié.
Top