Journal de l'alcoolisme et de la toxicomanie

Journal de l'alcoolisme et de la toxicomanie
Libre accès

ISSN: 2329-6488

Abstrait

Neuroanatomical Relationships between Orexin/Hypocretin-Containing Neurons/Nerve Fibers and Nicotine-Induced c-Fos-Activated Cells of the Reward-Addiction Neurocircuitry

Ozra Dehkordi, Jed E Rose, Martha I Dávila-García, Richard M Millis, Samar Ali Mirzaei, Kebreten F Manaye and Annapurni Jayam-Trouth

Orexin/hypocretin-containing neurons in lateral hypothalamus (LH) are implicated in the neurobiology of nicotine addiction. However, the neuroanatomical relationships between orexin-neurons/nerve fibers and nicotine-activated cells within the reward-addiction neurocircuitry is not known. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by an acute single injection of nicotine (NIC, 2 mg/kg, IP). Sequential double-labelling was then performed to identify the location of orexin-containing neurons and nerve fibers with respect to NIC-induced c-Fos activated cells and/or tyrosine hydroxylase (TH) immunoreactive (IR) cells of the mesocorticolimbic reward-addiction pathways. Orexin-IR nerve fibers and terminals were detected at multiple sites of the NIC reward-addiction circuitry in close apposition to, and intermingled with, NIC-induced c-Fos-IR cells of locus coeruleus (LC), ventral tegmental area (VTA), nucleus accumbens (Acb), LH and paraventricular thalamic nucleus (PVT). Double-labelling of orexin with TH showed frequent contact between orexin-IR nerve fibers and noradrenergic cells of LC. However, there was infrequent contact between the orexinergic fibers and the THexpressing dopaminergic cells of VTA, dorsal raphe nucleus (DR), posterior hypothalamus (DA11), arcuate hypothalamic nucleus (DA12) and periventricular areas (DA14). The close anatomical contact between orexinergic nerve fibers and NIC-activated cells at multiple sites of the reward-addiction pathways suggests that orexinergic projections from LH are likely to be involved in modulating activity of the neurons that are directly impacted by acute administration of nicotine.

Clause de non-responsabilité: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été révisé ou vérifié.
Top