ISSN: 2161-0533
Aikeremujiang Muheremu, and Xiaohui Niu
Microwave ablation is a technique which achieves tumor ablation by turning the ultrahigh frequency microwave energy into heat in the center of target tissue where the antenna was located. Microwave ablation can produce fast and well-distributed heat and causes necrosis in the tumor tissue. It is a micro invasive surgical method which can be applied in the treatment of a variety of tumors. It has several advantages comparing with other complementary methods for the treatment of tumor. For example, microwave ablation requires little cost, effectively prevents the metastasis of tumor cells, requires shorter time for hospital stay and helps keeping the integrity of the structure of the bone with tumor, which is essential for preserving the function of the limb after the surgery. However, it may also increase the incidence of pathologic fracture, cause nerve injury and poor wound healing. Appropriate output of energy and frequency of microwave, appropriate temperature in the center and surface of tumor as well as well manipulation of several antennas on large tumors can effectively eliminate the treatment related complications and achieve more satisfying results after the surgery.
Microwave ablation is a minimally invasive technique, which causes coagulation necrosis by rising the temperature with deposition of electromagnetic energy to a critical level of around 60. Microwave ablation can be applied as a complementary method for the treatment of tumors. It has already been used for the treatment of liver, gastrointestinal, cerebral, renal, lung and musculoskeletal tumors. In this paper, we made a review on the mechanisms, advantages, applications, and challenges for the microwave ablation in musculoskeletal tumor therapy.