ISSN: 2329-6917
Jooeun Bae, Derin B Keskin, Kristen Cowens, Ann-Hwee Lee, Glen Dranoff, Nikhil C Munshi and Kenneth C Anderson
Introduction: Effective combination immunotherapeutic strategies may be required to enhance effector cells? anti-tumor activities and improve clinical outcomes. Methods: XBP1 antigen-specific cytotoxic T lymphocytes (XBP1-CTL) generated using immunogenic heteroclitic XBP1 US184-192 (YISPWILAV) and XBP1 SP367-375 (YLFPQLISV) peptides or various solid tumor cells overexpressing XBP1 target antigen were evaluated, either alone or in combination with lenalidomide, for phenotype and immune functional activity. Results: Lenalidomide treatment of XBP1-CTL increased the proportion of CD45RO+ memory CD3+CD8+ T cells, but not the total CD3+CD8+ T cells. Lenalidomide upregulated critical T cell activation markers and costimulatory molecules (CD28, CD38, CD40L, CD69, ICOS), especially within the central memory CTL subset of XBP1-CTL, while decreasing TCRαβ and T cell checkpoint blockade (CTLA-4, PD-1). Lenalidomide increased the anti-tumor activities of XBP1-CTL memory subsets, which were associated with expression of Th1 transcriptional regulators (T-bet, Eomes) and Akt activation, thereby resulting in enhanced IFN-γ production, granzyme B upregulation and specific CD28/CD38-positive and CTLA-4/PD-1-negative cell proliferation. Conclusions: These studies suggest the potential benefit of lenalidomide treatment to boost anti-tumor activities of XBP1-specific CTL against a variety of solid tumors and enhance response to an XBP1-directing cancer vaccine regime.