Journal de chimie clinique et de médecine de laboratoire

Journal de chimie clinique et de médecine de laboratoire
Libre accès

Abstrait

Ispinesib Mesylate-Induced Oxidative Stress via miR-30e-5p/BCL2L11 Axis in Acute Myocardial Infarction: A Comprehensive Bioinformatics and Experimental Validation Investigation

Wu Ningxia, Li Fei, Wang Meihua, Na Liu, Cao Jie*

Objective: Cardiovascular disorders constitute a substantial threat to global human health and safety. Of note, Acute Myocardial Infarction (AMI), being a grave cardiovascular disorder, has collected considerable attention due to its elevated prevalence, mortality and broad demographic distribution. It is well established that hypoxia-induced apoptosis significantly contributes towards the onset and progression of AMI. However, several aspects regarding the biological indicators and molecular mechanisms of AMI remain elusive.

Method: This investigation utilized the Gene Expression Omnibus (GEO) database to perform comprehensive analysis of pivotal genes employing techniques like differential analysis, Venn analysis and Weighted Gene Correlation Network Analysis (WGCNA). Subsequently, the correlation between the key genes and correlation factors was scrutinized and the potential causal link between these factors and the outcome of AMI was probed via Mendelian Randomization (MR). Additionally, Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR) and lentivirus transfection experiments were executed, miRNA-mRNA networks were constructed utilizing miRBase databases, three-dimensional structures were predicted with the aid of RNAfold and Vfold3D databases and drug sensitivity analysis was conducted using RNAactDrug databases.

Results: Following classification, WGCNA clustering and wien screening analysis, two distinctly expressed genes intimately linked to apoptosis PTEN and BCL2L11 were successfully identified. The outcomes of RT-qPCR and lentivirus infection experiments corroborated that the expression pattern of BCL2L11 conformed to our prior findings. Mendelian randomization analysis exposed a strong causal relationship between BCL2L11 Single Nucleotide Polymorphisms (SNPs) and AMI. Lastly, through miRNA-mRNA network and drug susceptibility analysis, it was discerned that the ispinesib mesylate, bleomycin (50 uM)/miR-141-3p/BCL2L11 axis could potentially serve as efficacious therapeutic or preventive strategies against AMI.

Conclusion: In this study, we introduced the novel concepts of ispinesib mesylate and bleomycin (50 uM)/miR-141-3p/BCL2L11 axis, offering a fresh perspective on the apoptotic mechanism in AMI.

Clause de non-responsabilité: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été révisé ou vérifié.
Top