ISSN: 2157-7013
Tomasz Trzeciak, Ewelina Augustyniak, Magdalena Richter, Jacek Kaczmarczyk and Wiktoria Suchorska
The application of stem cells in regenerative medicine has recently become a rapidly growing field, holding promise for combating a number of orthopedic disorders including osteodegenerative ones (osteoporosis and osteoarthritis). Although the differentiation of stem cells into chondrocytes is now intensively investigated on a laboratory scale, implementing the laboratory protocols in clinical practice requires a scale-up culture. In order to apply this technique many aspects of stem cell bioprocessing such as optimal culture conditions for anchoragedependent or anchorage-independent cells and the type of culture must be taken into account. The presence of microcarriers and/or scaffolds for adherent cells is essential, since they provide a three-dimensional microenvironment indispensable for cell growth. For treatment of osteoarthritis, induced pluripotent stem cells and mesenchymal stem cells seem to be the best choice. Although, the scale-up culture using stem cells has been intensively investigated on a laboratory scale, the scale-up culture for clinical application still requires further technical improvements.In this review stem cell bioprocessing including the use of biomaterials, bioreactors, and factors affecting this process, as well as scale-up culture of induced Pluripotent and mesenchymal stem cells were presented and discussed.