ISSN: 2155-983X
Sunitha Abdeen and Praseetha PK
Cancer is the leading cause of death among people younger than 85 years. One of the most important factors in effective cancer treatment is the detection of cancerous tumor cells in an early stage. Magnetic nanoparticles have the unique ability to specifically target tumor tissue leaving healthy cells intact. These superparamagnetic particles offer great potential in variety of applications in their bare form or with a surface coating and functional group chosen for a specific application. Upon functionalization, MNPs can be used in in vivo and in vitro by application of magnetic field. Magnetic nanoparticles are less toxic, biocompatible and have a shorter relaxation time. Magnetic nanoparticles have been an important class of biomaterials. Magnetic nanoparticles are globular, iron oxide containing particles having large surface to volume ratio, quantum size effect, superparamagnetic character and functional groups for conjugating to multiple diagnostic and therapeutic agents. Magnetic nanoparticles have shown clinical utility in cancer imaging, biomolecular profiling of cancer biomarkers and drug delivery. The knowledge about magnetic nanoparticles has increased tremendously providing great opportunities for improving the management of cancer patients by enhancing the efficiency of detection and efficacy of treatment. The prospects of magnetic nanoparticles in cancer imaging and treatment are reviewed here. These particles are sure to create wonders in the future of nanomedicine.