Biologie cellulaire et du développement

Biologie cellulaire et du développement
Libre accès

ISSN: 2168-9296

Abstrait

Cflarb Complemented the Function of Cflara to Allow Cflara Knock out Zebrafish To Normal Development

Se Jong Huh, Kyu-Seok Hwang, Sushruta Koppula, Chul Geun Kim, Cheol-Hee Kim, Chan Gil Kim1

Cellular FLICE-inhibitory protein (cFLIP, cflara) is a regulator of death receptor (DR)-induced apoptosis and NF-κB activation. cFLIP is known to prevent activation of the caspase cascade by binding to FADD/caspase-8. Up-regulated cFLIP has been identified in many tumor types, and therefore restoring apoptosis by silencing cFLIP may be one of the more potent strategies in cancer therapeutics. The zebrafish cFLIP gene, cflara, has 2 death effector domains (DEDs) and a single caspase-like domain. Expression of cflara was detected in the zebrafish embryo by RT-PCR and whole-mount in situ hybridization. To study the in vivo function of cflara, we generated a cflara knockout mutant zebrafish using transcription activator-like effector nucleases (TALENs). Frame shift mutation is caused by a 10-bp deletion in the first DED domain. By inbreeding the F1 generation, a homozygous mutant fish was produced and confirmed by PCR. Knockout of cflara leads to abnormal heart development and embryonic lethality in mice. However, mutant zebrafish did not show any differences from wild type in heartbeat rate, survival rate or development. Zebrafish have analogues of both cflara and cflarb. Quantitative PCR showed that cflarb mRNA levels of mutant zebrafish were higher than those in the wild type. In a chemical exposure experiment, mutant zebrafish larvae showed a longer survival rate compared with wild type after CoCl2 treatment. However, no significant difference was observed from cisplatin treatment. This data suggests that cflarb may contribute to normal development and causes a difference in chemical resistance.

Clause de non-responsabilité: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été révisé ou vérifié.
Top