Spectrométrie de masse et techniques de purification

Spectrométrie de masse et techniques de purification
Libre accès

ISSN: 2469-9861

Abstrait

Boron Isotope Fractionation in Bell Pepper

Sonja Geilert, Jochen Vogl, Martin Rosner, Susanne Voerkelius and Thomas Eichert

Various plant compartments of a single bell pepper plant were studied to verify the variability of boron isotope composition in plants and to identify possible intra-plant isotope fractionation. Boron mass fractions varied from 9.8 mg/kg in the fruits to 70.0 mg/kg in the leaves. Boron (B) isotope ratios reported as δ11B ranged from -11.0‰ to +16.0‰ (U ≤ 1.9‰, k=2) and showed a distinct trend to heavier δ11B values the higher the plant compartments were located in the plant. A fractionation of Δ11Bleaf-roots = 27‰ existed in the studied bell pepper plant, which represents about about 1/3 of the overall natural boron isotope variation (ca. 80‰). Two simultaneous operating processes are a possible explanation for the observed systematic intra-plant δ11B variation: 1) B is fixed in cell walls in its tetrahedral form (borate), which preferentially incorporates the light B isotope and the remaining xylem sap gets enriched in the heavy B isotope and 2) certain transporter preferentially transport the trigonal 11B-enriched boric acid molecule and thereby the heavy 11B towards young plant compartments which were situated distal of the roots and typically high in the plant. Consequently, an enrichment of the heavy 11B isotope in the upper young plant parts located at the top of the plant could explain the observed isotope systematic. The identification and understanding of the processes generating systematic intra-plant δ11B variations will potentially enable the use of B isotope for plant metabolism studies.

Clause de non-responsabilité: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été révisé ou vérifié.
Top