Cardiologie clinique et expérimentale

Cardiologie clinique et expérimentale
Libre accès

ISSN: 2155-9880

Abstrait

Advances in Electrocardiogram-Based Artificial Intelligence Reveal Multisystem Biomarkers

Xichong Liu, Sabyasachi Bandyopadhyay, Albert J. Rogers*

As Artificial Intelligence (AI) plays an increasingly prominent role in society, its application in clinical cardiology is gaining traction by providing innovative diagnostic, prognostic, and therapeutic solutions. Electrocardiogram (ECG), as a ubiquitous diagnostic tool in cardiology, has emerged as the leading data source for Deep Learning (DL) applications. A recent study from our group used ECG-based DL model to identify cardiac wall motion abnormalities and outperformed expert human interpretation. Motivated by this work and that of many others, we aim to discuss advances, limitations, future directions, and equity considerations in DL models for ECG-based AI applications.

Clause de non-responsabilité: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été révisé ou vérifié.
Top